
One-dimensionality of phonon transport in cup-stacked carbon nanofibers

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2010 J. Phys.: Condens. Matter 22 065403

(http://iopscience.iop.org/0953-8984/22/6/065403)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 30/05/2010 at 07:05

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0953-8984/22/6
http://iopscience.iop.org/0953-8984
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


IOP PUBLISHING JOURNAL OF PHYSICS: CONDENSED MATTER

J. Phys.: Condens. Matter 22 (2010) 065403 (6pp) doi:10.1088/0953-8984/22/6/065403

One-dimensionality of phonon transport
in cup-stacked carbon nanofibers
Y Ito, M Inoue and K Takahashi

Department of Aeronautics and Astronautics, Kyushu University, 744 Motooka, Nishi-ku,
Fukuoka 819-0395, Japan

E-mail: takahashi@aero.kyushu-u.ac.jp

Received 23 October 2009, in final form 5 January 2010
Published 22 January 2010
Online at stacks.iop.org/JPhysCM/22/065403

Abstract
We treat the ballistic heat conduction of cup-stacked carbon nanofibers (CSCNF) by a
nonequilibrium molecular dynamics simulation. The CSCNF consist of numerous tiny
graphene cups linked in line by weak intermolecular forces. The simulation results show that
the thermal conductivity varies with the fiber length in a power law fashion with an exponent as
large as 0.7. The calculated phonon density of states revealed that a low frequency oscillation in
the radial and axial directions dominates the heat conduction in CSCNF. The atomic motions
indicate that these low frequency oscillations are quasi-one-dimensional (1D) where each cup
moves axially like a rigid body and radially with a breathing motion. This quasi-1D oscillation
occurs due to the unique structure of a CSCNF that resembles a 1D harmonic chain. Our
investigations show that treating a CSCNF as a 1D chain with three-dimensional oscillations
explains why this material has the highest ballistic phonon transport ever observed.

1. Introduction

In the past three decades, many superior properties of the
carbon nanotube (CNT) have been extensively studied. Its
extremely high thermal conductivity has been revealed both
experimentally [1–5] and theoretically [6–8] to be as high as
4000 W m−1 K−1 for a single-walled nanotube (SWNT) at
room temperature [8]. This excellent heat transport ability
is attributed not only to the stiff sp2 bond but also to the
long mean free path (MFP) of a phonon. In pristine SWNTs,
boundary scattering of phonons does not occur and only
the phonon–phonon scattering limits the phonon mean free
path (MFP). This type of scattering can be expected to be
less in SWNTs than any other material due to their quasi-
one-dimensionality, resulting in a long MFP of the order of
micrometers even at room temperature. When the MFP is
longer than the material’s length, the phonon is scattered at
the ends and the material’s thermal conductivity is changed.
Maruyama [9] discovered that, for a short SWNT, the long
MFP of a pristine SWNT yields a unique thermal conductivity
λ that depends on the tube length L as λ ∝ Lα . Here, the
phonon is scattered by the tube ends. This is in contrast to
the usual Fourier law situation, where the thermal conductivity
of materials is constant. The power law variation of thermal
conductivity is known as ballistic phonon transport.

On the other hand, it has been disclosed that unusual
thermal conduction appears in 1D systems [10]. Rieder et al
reported that the 1D harmonic chain shows a flat temperature
distribution even though a temperature difference is applied to
its ends [11]. This is because the phonon in this system is
transported without scattering, which results in the exponent
α = 1.0. As computational power is improved, numerical
studies are being widely conducted on the heat conduction
in 1D chains. Lepri et al [12] reported that the thermal
conductivity of the anharmonic Felmi–Pasta–Ulam (FPU) β

lattice varies with length as λ ∝ L0.37. The FPU α lattice [13]
and the Toda lattice [14] have also been investigated and
similar power laws were obtained with α values of about
0.4. The 1D harmonic chain with a three-dimensional (3D)
oscillation was also treated [15] and its thermal conductivity
was found to depend again on a power law with an exponent
α within the range 0.55–1.0, corresponding to the degree to
which the 3D oscillation is not considered to be not local
(α = 0.55) or strictly local (α = 1.0).

The SWNT is the lowest-dimensional material ever
discovered and the length dependence of its thermal
conductivity is one of the hottest topics in the heat-related
sciences. There are several reports [9, 16, 17] on the value
of the exponent α, for example, α = 0.40 at 300 K and
α = 0.26 at 800 K for a (5, 5) SWNT [16]. Recently, a couple
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of experimental attempts [18, 19] were conducted to explore
the length dependence of a CNT’s thermal conductivity, and
it was confirmed to increase with its length. However, at
variance with the theoretical 1D predictions, it was found
that this length dependence holds only for short tubes, and a
transition from ballistic to diffusive transport appears as the
tube length increases [8, 20]. For an infinitely long SWNT,
the thermal conductivity becomes constant because the MFP
is shorter than the tube length and the phonon is scattered by
the phonon–phonon scattering, not by tube ends. However,
if we could discover another truly 1D material, or a more
strictly one-dimensional material than a SWNT, then ballistic
heat conduction might be realized over a longer distance than
so far achieved.

In recent experiments by the authors, an unexpectedly
high thermal conductivity of an individual CSCNF was
measured [21]. The CSCNF are constructed by stacking
truncated cone cups [22]. Only weak intermolecular forces
provide the connection between cups. Therefore, the in-
axis thermal conduction in a CSCNF had been predicted to
be very low based on the usual assumption that the thermal
conductivity is independent of the length. However, a value
of about 40 W m−1 K−1 at 300 K was obtained in experiment,
even though the reported graphite c-axis thermal conductivity
is only 2 W m−1 K−1 [23]. A theoretical study suggests an
even lower thermal conductivity [24]. We have to conclude
that the measured thermal conductivity of CSCNF cannot
be explained by diffusive heat transfer. The most likely
explanation is that unsuspected 1D phonon transport appears in
the CSCNF. In this study, in order to make clear the origin of
heat conduction of CSCNF, we have conducted nonequilibrium
molecular dynamics simulations.

2. Numerical modeling

The calculation model is illustrated in figure 1, together with
a high resolution transmission electron micrograph (HRTEM)
image of a CSCNF. Although samples we have prepared and
measured in the past [21] had outer and inner diameters of
approx. 180 nm and 140 nm and lengths of approx. 5 μm,
much thinner CSCNFs can be synthesized [22]. Due to the
limitations of computational power, we here treat very thin and
short samples to understand the fundamental mechanism of
phonon transport. Each cup in figure 1 consists of 470 carbon
atoms; only carbon hexagons exist in this structure. The cup
is part of a graphene cone made up of a circular sector with
a central angle of 120◦ with a radius of 3.49 nm. The outer
diameter of a cup is 2.33 nm and the inner is 0.73 nm. The
angle between the cup surface and the fiber axis is 19.5◦ and the
axial cup–cup distance is 1.01 nm, as the initial interlayer cup–
cup distance is set to 0.337 nm. The Brenner potential [25] is
used for the carbon–carbon bond in each cup and the Lennard-
Jones potential:

φ(r) = 4ε

[(
σ

r

)12

−
(

σ

r

)6]
(1)

for carbon–carbon nonbonded interactions. The parameteriza-
tion employed for the Lennard-Jones potential in this study is

Figure 1. The calculation model (a) and an HRTEM image (b) of a
CSCNF. In the calculation model, the outermost regions have
imposed on them a fixed boundary condition. Their neighboring
small regions are set to be a heat bath. The temperature of the left
heat bath is set to 320 K and that of the right is 280 K. Panel (b)
shows the hollow configuration of an actual CSCNF. A schematic
view of the layers in a CSCNF is also shown in (b).

ε = 2.40 meV and σ = 0.337 nm. A fixed boundary condition
is imposed on the end regions. Their neighbor regions com-
prise a heat bath, whose temperature is controlled by a Nose–
Hoover thermostat [26]. In this simulation, the velocity Verlet
method is adopted to integrate the equation of motion with a
step time of 0.5 fs. For the first 500 ps, the simulations be-
gin by equilibrating the system at 300 K. The temperature is
calculated using the kinetic theorem as follows:

T = 1

3nkB

n∑
i=1

miv
2
i , (2)

where n is the number of molecules which belong to a small
region, kB is the Boltzmann constant, mi is the mass and vi is
the velocity of the i th molecule. In the current study, the left
heat bath is raised to 320 K and the right heat bath is lowered to
280 K. We treated CSCNFs made up from three, five and eight
cups.

3. Thermal resistance

For this kind of 1D material, the cross-sectional area needed to
obtain the thermal conductivity is sometimes difficult to define,
but the thermal resistance R is straightforwardly calculated
from R = �T/Q, where �T is the temperature difference
between both heat baths and Q is the heat flow calculated
from the average of the additional kinetic energy between
the left and right heat baths. The thermal resistance in
this way is 1.04 × 1010 K W−1 for a three-cup CSCNF and
1.29 × 1010 K W−1 for one of five cups; the thermal resistance
does not increase in proportion to the number of interlayers,
in disagreement with the prediction that the total resistance
should be the summation of interlayer resistances. For eight
cups, the thermal resistance is 1.64 × 1010 K W−1. Here, the
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Figure 2. The N dependence of J N (made dimensionless by
dividing by J N (N = 1)) of a CSCNF, where N is the number of
free cups and J is the heat flux. The thick line represents a N0.75

variation and the thin line, one of N0.71. The slope corresponding to a
one-dimensional harmonic chain (dotted–dashed line) and an
SWNT [9] (double-dotted–dashed line) are also plotted. The product
J N is proportional to the thermal conductivity λ and N is
proportional to the length L . Circles represent calculated data for
three, five and eight cups CSCNFs.

N dependence of J N of the CSCNF is plotted in figure 2,
where N is the number of free cups and J is the heat flux.
The product J N is made dimensionless by dividing by J N
(N = 1). The circle points are the calculated values for
the CSCNF in this study. The solid circle is for a 470-atom
cup and the open circle is for a 282-atom cup. The lines
for a one-dimensional harmonic chain and an SWNT [9] are
also plotted for reference. Because J N is proportional to the
thermal conductivity λ and N is proportional to the fiber length
L [15], the calculated relationship of λ ∝ L0.32 of an SWNT is
presented in this plot as the line J N ∝ N0.32. The relationship
between λ and L for a 1D harmonic chain is presented in this
plot as J N ∝ N1.

The power law exponent α, equal to the slope of a line
in figure 2 obtained from the calculated data (circles), for a
CSCNF of up to eight cups is 0.75, which means that the
phonon transport in a CSCNF has the potential to be more
ballistic than in an SWNT. Another CSCNF made from smaller
cups, each with the same inner diameter but consisting of 282
atoms, was also investigated. We obtained α = 0.71 for
this smaller cup. Considering the calculation uncertainty, we
consider that the length dependence of thermal conductivity of
a CSCNF is essentially independent of cup size.

Concerning the thermal conductivity, our calculations give
an extremely low value of 0.112 W m−1 K−1 for the five-cup
system of 5.55 nm length, due to the weak cup–cup interaction.
However, the power law (λ ∝ L0.75) found for this CSCNF
predicts that it will overtake the SWNT [8] in terms of heat
transport ability if the CSCNF is longer than 6.6 mm at room
temperature. Thus, the exponent α, or the one-dimensionality
of heat conduction, is critical for long-distance heat transport.

4. Modal analysis

The phonon density of state (DOS) is calculated for a five-cup
CSCNF using all the atoms in a cup, except for the fixed and

Figure 3. DOS of the left end fixed cup, intermediate cup and a (5, 5)
SWNT from 0 to 60 THz. The resolution is 0.25 THz. An oscillation
attributed to the presence of carbon hexagons appears in all graphs.

heat-bath atoms by the following equation:

D(ω) =
∫

eiwt〈v(t) · v(0)〉 dt, (3)

where ω is frequency. The DOSs of the end cup, an
intermediate cup and an SWNT are displayed in figure 3,
covering a range from 0 to 60 THz with a resolution of
0.25 THz. All the DOSs are similar because both a CSCNF
and an SWNT are graphene-based tubular materials and the
oscillations attributed to the carbon hexagons always appear.
The stiff bonding force in graphene produces high frequency
phonons [27], but such phonons are not propagated through
the cup interlayers because the cup–cup connection is only
made by very weak van der Waals’ forces. Extremely low
frequency oscillations exist only in the intermediate cup. The
heat conduction of the CSCNF along with the fiber axis is
considered to be carried by lower frequency phonons.

In order to discuss the low frequency oscillation, the DOSs
are recalculated from 0 to 2 THz with a resolution of 0.01 THz
in the axial, circumferential and radial directions. Figure 4(a)
shows DOS of the left end cup and (b) is that of its neighbor on
the right. Figure 4(c) is for the center one of a five-cup CSCNF.
While low frequency peaks around 1 THz are not apparent in
the end cup, the intermediate cups have several peaks in the

3



J. Phys.: Condens. Matter 22 (2010) 065403 Y Ito et al

Figure 4. DOS from 0 to 2 THz in the axial (solid gray),
circumferential (broken black) and radial (solid black) directions for
the first (a), the second (b) and the third (c) cup. The resolution is
0.01 THz. The first cup, upon which a fixed condition is imposed,
has a different distribution from the others, which are similar. For all
cups, the circumferential component is weak. The axial and radial
components are dominant below 1.00 THz, while the axial is
dominant at frequencies higher than 1.00 THz.

range of 0.2–1.5 THz; these are expected to be the major heat
carrier of a CSCNF.

Compared with the other directions, the circumferential
oscillation is largely absent except for a peak at 2 THz for
the end cup. This peak is due to a twist mode. Because
the intermediate cups are connected by nonbonding forces
and can freely rotate, this twist mode does not propagate and
only a very slow rotation of intermediate cups occurs. As a
result, the contribution of the circumferential mode to the heat
conduction is negligible. For axial and radial modes, the DOSs
of intermediate cups in figures 4(b) and (c) are similar. The
low frequency oscillations in these directions are thought to
dominate heat conduction in CSCNF.

5. One-dimensionality of CSCNF

A CSCNF is made up from nonbonded cups that are stiff
structures of covalently bonded carbon atoms. Thus, it is
meaningful to investigate our MD results by assuming each
cup to be a rigid body. Figure 5 shows the axial (a) and

Figure 5. The displacement in time of a carbon atom and the center
of inertia of the third cup in axial and radial directions. The vertical
axis indicates the displacement from the time-averaged position of
the center of inertia. The horizontal axis is time with a resolution of
0.1 ps. (a) The axial displacement of a carbon atom. (b) The radial
displacement of a carbon atom. (c) The axial and radial displacement
of the center of inertia of the cup. Panels (a) and (b) show the real
position of a carbon atom in the third cup. In (c), the black line
shows the axial displacement, and the gray line shows the radial. The
resolution is 0.1 ps. Both phase and amplitude are almost the same
for the center of inertia of the cup and an atom in the cup. The radial
displacement of (b) is considered to be due to a breathing-like mode.

radial (b) motions of an atom and those of the center of inertia
(c) of the third cup. The oscillation with a frequency up
to 10 THz can be observed in figure 5. This figure allows
us to discuss the motions which are important contributors
to heat conduction in the CSCNF. For the oscillation in the
axial direction, the cup motion in figure 5(c) shows good
agreement with the motion of a carbon atom in figure 5(a).
This means that both phase and amplitude are almost the
same for all atoms in a cup, resulting in a rigid-body-like
motion of cups in the axial direction. On the other hand,
the radial displacement of the center of inertia is smaller than
0.03 × 10−10 m, though that of an atom in figure 5(b) is
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Figure 6. A schematic view of the radial breathing-like mode and the
axial mode. The solid line shows the equilibrium position and the
distance between broken lines shows the amplitude. The cup
oscillates backwards and forwards in the axial direction or deforms
radially between the solid and broken lines. The off-axis motion
rarely appears in a CSCNF.

about 0.5 × 10−10 m. This suggests that each cup moves in
a breathing-like way in the radial direction. In other words, as
figure 6 illustrates, the cup diameter repeatedly expands and
contracts, and an off-axis motion rarely appears. Because this
coherent breathing [28] coupled with axial and radial motions
is expected to be responsible for the one-dimensionality of
CSCNF, we discuss it further in the following sections.

Considering that the cup surface is at an angle of about
9.59◦ with the fiber axis, this breathing-like radial mode can be
divided into interlayer and in-layer modes as well as the axial
oscillation. Roughly speaking, the interlayer mode coincides
with the longitudinal mode of a 1D chain and the in-layer
mode with the transverse mode. Consequently, the motion of
a CSCNF can be regarded as that of a 1D harmonic chain with
3D oscillations. The presence of 3D oscillations is one of the
major reasons why α obtained in our simulations is less than
1.0, even though the CSCNF is a very similar system to a 1D
harmonic chain.

Liu et al [15] treated the 1D harmonic chain with a
3D oscillation and found that α is dependent on the non-
dimensional quality a∗/T ∗0.5, where a∗ is the dimensionless
lattice constant and T ∗ is the dimensionless temperature. This
quantity indicates the relative scale of the lattice oscillation
to the lattice constant. A large a∗/T ∗0.5, where the atomic
oscillation can be considered as local, induces a large α. When
a∗/T ∗0.5 is over 500, α reaches 1.0 and the oscillation is
considered as strictly local. When the oscillation cannot be
considered as local, that is for a∗/T ∗0.5 < 10, α converges
to 0.55. By using this quantity, we can evaluate the one-
dimensionality of the phonon transport in the present CSCNF.
The non-dimensional temperature T ∗ is expressed as

T ∗ = kB

mω2
0b2

× T, (4)

where kB is the Boltzmann constant, m is the mass of the
particle, ω0 is the oscillation frequency and b is the equilibrium
distance [29, 30]. In the current study, b is identical to the
lattice constant a, which is also equal to the interlayer distance
of cups. Thus, because a∗ is expressed as a∗ = a/b, then a∗
becomes 1.0. The dominant frequency of a CSCNF here is the
order of 1 THz as discussed earlier. Other parameters are as
follows; m ∼ 10−23 kg for 470 carbon atoms, ω0 ∼ 1012 Hz,
b ∼ 10−9 m, kB = 1.38 × 10−23 J K−1, T = 300 K. Using
these value, the value of the quantity a∗/T ∗0.5 obtained for a
CSCNF is about 50, thus the oscillation of the CSCNF can
be regarded as quasi-local. Further, the value of α = 0.75
obtained for a CSCNF matches the α range of [15]. This
estimation reconfirms that a CSCNF is close in nature to
a 1D harmonic chain with 3D oscillations. In addition, if
a∗/T ∗0.5 is 50, α should be about 0.85 according to [15].
The deviation between this value and ours (0.75) probably
originates in the phonon scattering inside each cup produced
by, for example, the breathing-like and original graphene
modes discussed above.

6. Summary

Phonon transport in a CSCNF is treated using a molecular
dynamics simulation. The thermal conductivity is found to
obey the power law of λ ∝ L0.7, which has the highest
exponent ever discovered at room temperature. In a CSCNF,
low frequency axial and radial oscillations contribute to the
heat conduction because the connection between cups is by
van der Waals’ forces. On the other hand, the low frequency
circumferential mode is weak and propagates poorly due to
free rotation of intermediate cups. The axial mode acts as
if each cup behaves like a rigid body, but the radial mode
originates in a breathing-like deformation of a cup. Because
both modes are local oscillations, it can be concluded that
a CSCNF is the most one-dimensional system in terms of
phonon transport. This unique property of a CSCNF raises our
hopes of transporting thermal energy without loss over a longer
distance than ever.
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